1. 三采網路書店
  2. 自然科普
  3. 科普叢書
全站分類
 
同類書籍推薦
寂寞的大狗
無聊的價值
水晶老師::生活韓語,跟韓國人聊不停,韓國旅遊前必看!
 
[即將上市]

茶杯裡的風暴:丟掉公式,從一杯茶開始看見科學的巧妙與奧祕

Storm in a teacup : the physics of everyday life



定價:420元 
優惠價:79 332元    
 

內容簡介

終於,科學家丟掉公式算式,開始講人話了!

★美國Amazon4.4星好評推薦!
★《華爾街日報》、《衛報》、《科學》雜誌(Scientific)、《書單》雜誌(Booklist)、《柯克斯書評》(Kirkus Reviews)佳評如潮!
★《數學教你不犯錯》作者、數學家 艾倫伯格(Jordan Ellenberg)誠意盛讚:「在每一個岩石下、每一個雨滴旁、每一顆沙子內,海倫‧齊爾斯基都能找到科學展現的奇蹟。」
《悖論》《解開生命之謎》作者、物理學家 吉姆.艾爾-卡利里(Jim Al-Khalili)傾力推薦:「這本書展現了物理學平易近人而有趣的一面,使我讀起來非常地快樂。」

試想一下:
藍莓是藍色的,為什麼藍莓果醬卻是紫色的?
用烤麵包機烤出一片外酥內軟的吐司,會和宇宙過熱現象有關?
如何用一隻手指就能判別生雞蛋和熟雞蛋?
廚師奮力甩動披薩的餅皮,也是在進行一個物理學的動作?

總是有些日常現象被我們視為理所當然,卻往往很少人思考過:「為什麼?」以及「這些事為什麼很重要?」
物理向來似乎只是科學家的事,但經典的物理原理其實無處不在,而且還很日常!這本書正是一場由物理、化學、生物、醫學、能源(甚至還有鐵達尼號!)聯手企劃的驚奇之旅,透過生活中許多習以為常的小事物,展現出最簡單卻極其精巧的科學奧祕!
海倫‧齊爾斯基將所有無法想像而又互相影響的事物巧妙連結,從雞蛋到哈伯望遠鏡、從深海的鯨魚惡鬥巨魷到佛卡夏麵包的烘烤過程,以及從攪動的茶水如何想像地球的大氣……透過她生動俏皮的描述,我們輕盈地越過科學的高牆,看見那些小小的現象各有價值;當它們聚集在一起時,便成就了你我的生活,甚至成為推動世界的巨大力量——

作者簡介

海倫‧齊爾斯基(Helen Czerski)
倫敦大學助理教授,也是一名物理學家,專門研究在開闊大洋中、位於碎波下的氣泡,以了解它們如何影響天氣和氣候。時常參與、主持BBC的電視節目,分享海洋和大氣物理學中的有趣故事,最近播出的系列有:「色彩的奧祕——科學光譜(Colour: The Spectrum of Science)」、「公轉與自轉(Orbit)」、「冰山探險(Operation Iceberg)」、「超級感官(Super Senses)」、「達拉歐布萊恩的科學俱樂部(Dara O’Briain’s Science Club)」以及許多關於氣泡、陽光與天氣的科學節目。她也是《BBC焦點雜誌》(BBC Focus magazine)的專欄作家,並於2014年由英國雜誌出版協會(PPA)選為年度專欄作家。此外,她也為英國《衛報》(Guardian)撰寫過非常多的文章。

譯者簡介

藍仕豪
生於民國73年的桃園人,因為小學時讀了愛因斯坦的傳記,從此迷戀著科學。雖然大學唸的是工程科學系,卻在研究所時進入天文學的領域:取得清大的碩士之後,更嘗試讓更多朋友了解並喜歡上科學。並且期待科學能夠與人文結合,讓科學更有溫度,讓人文更有活力!

書籍目錄

前言

1. 爆米花與火箭—氣體定律

2. 有起就有落—重力

3. 美麗小世界—表面張力與黏滯性

4. 片刻之間—變化與平衡狀態

5. 波動—從水波到WiFi

6. 鴨子為何不會雙腳冰冷?—原子的舞曲

7. 湯匙、旋轉,還有第一枚人造衛星—轉動的原理

8. 異性相吸—電磁學

9. 不同的視野

致謝

參考資料

精采試閱

任何人在自家廚房進行會爆炸的實驗,可能會引起家庭革命,但如果成品是美味又不會破壞廚房的,那就另當別論了。
乾燥的玉米含有碳水化合物、蛋白質、鐵與鉀,是一種不錯的食物,但是這些東西被包覆在一個堅硬的外殼內,因此若要食用乾燥的玉米,似乎得透過激烈的手段改變現狀。「爆破」是其中一種有效的方式,可以讓玉米爆開而改變形態的成分,就藏在這顆種子當中。昨晚,我經歷了一場充滿爆破的烹飪,因為我做了爆米花,並且發現在玉米不受歡迎的堅固外殼內,竟然隱藏有柔軟的內層。但是為什麼玉米爆炸後會變成蓬鬆的爆米花,而不是碎片?
我將一匙乾燥的玉米粒放到油溫已經很高的平底鍋內,蓋好蓋子並泡上一壺茶。相較於窗外肆虐的狂風暴雨,油鍋內嘶嘶作響的玉米就顯得安靜多了。雖然一開始平底鍋內似乎沒什麼動靜,但是一場關於氣體的好戲正要上演。
每個玉米內部都有胚芽,它們是植物生命的起點,而周圍的胚乳則是胚芽發芽時所需的養分。胚乳主要的成分是澱粉,此外還有大約14%的水分,當水分在鍋中逐漸受熱時,水分子運動越來越劇烈,最後沸騰而變成蒸氣。玉米外殼原先是為了保護種子不受外界傷害,但是加熱中的玉米內部卻開始產生暴動,讓玉米粒變成一個迷你的壓力鍋。當汽化的水分子數量不斷增加,並且以越來越快的速度大力撞擊玉米粒的內壁時,就會形成越來越大的壓力。
壓力鍋就是藉由高溫產生壓力的原理,使得烹飪變得很有效率,同樣的原理也發生在要變成爆米花的玉米內部。當我離開爐子去找茶包時,油鍋的溫度已經將玉米內部的澱粉加壓煮成類似凝膠的糊狀物,此時大多數的玉米殼還能承受壓力,但是當玉米內部溫度上升到180℃時,壓力就接近我們周遭空氣的10倍,而這也是玉米外皮的耐壓極限。
我搖晃了平底鍋一下,聽到第一個爆破聲,幾秒鐘之後,鍋內發出的聲響就像一架扣下扳機的迷你機關槍,許多爆米花敲打著透明鍋蓋的頂部,並且從蓋子的邊緣散發出獨特而令人印象深刻的蒸氣。在我離開幾秒鐘去倒茶的時間裡,這些像彈幕一樣的爆米花就多到把蓋子撐開且跳了出來。
這一個小小的「劇變」前後,有些物理的規則大不相同。在爆米花破殼而出之前,數量固定的水蒸氣,在玉米內部隨著溫度升高而壓力增加、最終超越外皮能承受的極限時,內部所釋放出的高壓澱粉糊不再受到體積限制,可以開始擴張;此時,澱粉糊的分子仍在快速運動,直到它的壓力下降到與外界的大氣壓力相同為止。在這個過程當中,綿密的白色泡沫快速擴大變得蓬鬆,並且將玉米粒內外翻轉。當它冷卻而凝固後,爆米花就完成了。
每當我開心地吃完爆米花時,總會發現一些焦黑在鍋底、沒有成功變成爆米花的玉米粒。這是因為在進入油鍋之前,玉米粒的外殼已經受損,以至於在加熱的過程中,玉米粒當中的水蒸氣不斷散出而無法蓄積壓力。事實上,只有少數穀物可像玉米這樣變成爆米花,主要條件就是外殼必須密閉而沒有氣孔。但若是玉米粒內部的水分不足(原因可能是在不當的季節採收),也會使得壓力不足而無法「爆開」,這些失敗而堅硬的玉米粒就無法食用了。
我將一碗爆得恰到好處又柔軟的爆米花,連同剛泡好的茶放在窗前,欣賞著窗外的暴風雨。也許「爆破」不盡然都是壞事!

///

地球上有一層包覆著我們的大氣,讓氣體分子永遠存在我們的四周,並且不斷撞擊著我們,以及維繫我們的生存。大氣真正的美妙之處在於它並非處於靜止狀態,而是不斷變化。如果我們的肉眼可以觀察到空氣,將會看到它們豐富的運動。透過這個章節提到的氣體定律,無論是哪一種分子的氣體,它們都可以升溫或冷卻,也可以壓縮或擴張,因而造成各種有趣的影響。就算這些氣體不在鯨魚的肺部或是蒸汽機的鍋爐內,它們仍然在運動。在大氣中,一團氣體的周圍也是氣體,這意味著它們不斷地影響彼此,不斷地依照周圍狀況調整狀態。雖然我們無法分析每一個細節與變化行為,但是它的結果卻無人不知——我們稱之為「天氣」。
一個遼闊的平原是觀察風暴的最佳場地,這個地方可能前一天還晴空萬里,緩和的大氣流動讓人以為這裡不曾改變過。但是此時,眼睛看不見的空氣分子也許正逐漸聚集,從地表附近開始往上移動,並持續不斷地推擠、擾動、改變狀態與流動。接著,高壓區的空氣會往低壓區前進,並且在過程中不斷加熱或冷卻。這個過程看似持續、緩和而無特別之處,然而實際上,氣體分子正在醞釀著巨大的能量。
暴風雨來臨前的日子一如往常,但是分外晴朗的天空,使得地表升溫的速度更快。於是,空氣分子獲得更多的能量。中午過後不久;一片厚實的雲正逐漸接近並持續擴張,直到它延伸到地平線,壓力的差異讓這個橫跨平原的巨大氣體團,能量不斷地轉移。接下來一場大戲就要上演了,雖然空氣分子會因為運動而相互影響,但是它們沒有時間達到穩定的狀態,而且大量的能量正向外傳遞。同時地表受熱上升的空氣不斷推擠、穿過雲層,並在上方形成看起來像一座不斷向上伸展的蘑菇狀結構。
當雷雨雲到達頂部時,取代平原上廣闊藍天的,是一大片低沉黑暗的蓋子,而在地面上的我們,已經被這場狂暴所包圍。我們無法看見空氣分子,但是我們看得到風起雲湧的現象。這暗示著因為壓力失衡,空氣胞之間正在發生劇烈的衝擊,然而這也是一種恢復平衡的過程,只是透過這樣快速而劇烈的方式,空氣分子會彼此交換能量,水氣凝結成水滴,接著就落下傾盆大雨。在風暴橫掃的範圍之中,氣體分子也會在地表上肆虐,而我們正身在其中。
這場暴風雨提醒了我們,平常的藍天之下究竟蘊含多少能量。但其實狂風與暴雨都是來自於我們頂上,微小氣體分子的碰撞與推擠。當空氣之中的水氣分子從陽光中獲得能量後,就會上升而聚集成雲,一旦它們的能量變成熱輻射逸散到了太空,就會凝結成雨滴回到大海或陸地;氣體在這個循環的過程中,依然遵照理想氣體定律,不斷地調整而尋求平衡。
我們生活在一顆旋轉的行星上,這裡有各種地形和色彩豐富的表面,但這也使得大氣在調整平衡時,要經歷複雜的過程,其中無論是水氣形成的雲,或是其他各種氣體,都會面臨相同的狀況。天氣預報只是追蹤與分析這些氣體之間的戰鬥,並將可能影響我們的狀況彙整出來,這一切與前面提到的大象喝水、蒸汽機運作、火箭升空所運用的原理,全都是氣體定律運作的結果。讓玉米變成爆米花的物理原理,也同樣支配著我們的天氣。

///

我們對於重力作用在固體上的現象大多很熟悉,主要也是因為我們本身便是一種固體。然而在現實世界中,圍繞在固體四周的,往往是另外一種流動的東西,是一種稱為「流體」的物質,而且流體正不斷受到外力的影響而改變。人類的肉眼可以清楚見到葉子的掉落或是橋梁的升降,卻無法觀察到流體內的複雜變化。事實上,流體力學是一個美麗的世界,它們拂過、翻攪、綿延的狀態,充斥在世界各個角落且令人驚奇。
我認為泡泡之所以可愛,是因為它們無所不在,並且是物理世界的無名英雄。它們會不經意地出現在水壺、蛋糕、化學反應裝置或是浴室裡面,與其他物質產生反應,或是正在進行一些有用的事情,只是泡沫往往稍縱即逝。數年前,有一群五到八歲的小朋友,我問他們知不知道哪邊可以看到泡泡,他們很踴躍地跟我說在汽水、浴缸或是水族箱當中。
我在一整天活動的尾聲已經有些疲憊,但還是開朗地帶領最後一群小朋友,並試圖管理大家的秩序。過了好一陣子之後,我問:「你們知道哪邊可以找到氣泡嗎?」接著,一個小朋友舉手回答,注視著我,然後說:「起司……與鼻涕泡!」儘管我從未想過這個答案,但也不能否定他的邏輯,畢竟小朋友比起我們更常見到鼻涕泡。但是對於至少一種生物而言,鼻涕泡是生活的關鍵。讓我們來見見這種海中的紫色蝸牛——紫螺(janthina janthina)吧!
海螺通常生活在海底或是岩石上,當你把岩石上的海螺抓起來放到水中,牠也會立刻到達水底。古希臘的阿基米德(就是那位發現浮力而大喊「Eureka」〔我發現了〕的人)是第一位描述物體浮起來或沉下去之機制的人。雖然,阿基米德對於船體的浮力可能比較有興趣,但是同樣的原理其實也發生在海螺與鯨魚身上,或是任何浸入水中,或是漂浮在水上的物體。
從阿基米德的想法可以知道,如果海螺占據海中的某個「位置」,那個「位置」的海水就會被排開,也就是說,海螺在水中必須要與海水競爭空間,而這種競爭的力量都來自拉往地心的重力。雖然海水是流動的流體,也依然有重量,而物體受到重力牽引的力量與質量成正比;也就是說,如果海螺的質量是同體積海水的2倍時,那牠受到的重力牽引就會變成所排開海水的2倍。
阿基米德的原理告訴我們,海水會施予海螺一個向上的力量,但是這時候的海螺也被重力往下拉,因此,「海水的壓力作用在物體表面,並將原有物體往上推」的力量就稱為「浮力」。所以海螺如果比海水的密度小,就會往上浮。實際上,由於海螺的質量大於同樣體積的海水,因此牠在重力的競爭中就會獲勝,可以沉到水底;但是如果海螺質量小(相同體積下的質量比較少,代表密度較低),牠就會浮起來。
在海螺演化的歷史上,大多數的歲月都是在海中度過。但在過去的某個時候,一個尋常的海螺忽然出現了很糟的狀況,牠所產的卵被包覆在過多的氣泡中,而且氣泡不斷地變大。浮力只在乎整體的平均密度,當氣泡增加體積,卻沒有增加重量的情況下,氣泡與海螺的整體密度低於海水的密度時,海螺就會浮起來,見到了陽光與廣闊的海面,這隻浮起的海螺正是另一個演化的起點。
如今在溫暖海域常見的紫螺,應該是那隻迷失在海面的海螺的後代。這種有著鮮明紫色的海螺,會分泌一種黏液(我們偶爾可以在早晨花園的石頭上,見到蝸牛爬行所留下來類似的黏液),並利用身上強壯的足部讓黏液圈住空氣,製作出一個通常比自己身體還大的泡沫筏,這樣一來可以確保牠與氣泡的總密度小於海水,因此能一直仰臥漂浮在海面上(氣泡在上而殼在下方),並且以捕捉水母為食。如果你在海灘上看到的海螺有紫色的殼,那可能就是紫螺了。
浮力可以幫我們分別密封容器內的物體或成分,而且快速有效,例如現在許多汽水都有無糖版本,如果今天把它們放在一模一樣的瓶子中,在沒有任何標示的情況下,要如何分別哪罐不含糖呢?答案是把瓶子放入淡水中,無糖的汽水會浮在水面,而含糖的則是會沉入水底。因為這兩種飲料的體積與容量相同,但是一般330毫升的含糖汽水,會有大約30~50克的糖溶解在飲料中,代表含糖飲料的密度更高而會沉到淡水中;無糖飲料內的甘味劑與色素等等添加物,所添加的質量就非常少,其餘部分幾乎都是水與二氧化碳,因此裝有無糖飲料的罐子就會漂浮在水面上。
此外,浮力還可以用來分辨雞蛋是否新鮮。由於放在冰箱內很久的雞蛋會因為內部的水分蒸發,空隙被空氣取代而變輕,所以將雞蛋放入水中,會沉入水底的是未超過一星期的雞蛋。但是因為雞蛋尖端的某些空隙中含有空氣,所以在水底的雞蛋會站起來;相反地,如果蛋已經放置很長一段時間,它們往往就會浮在水面上。不過,準備一頓早餐可以學到的科學,可不只有分辨雞蛋而已!
如果可以調整與控制一個物體所攜帶的空氣數量,進而改變整體占用的空間,就可以在液體中控制它要下沉還是上浮。當我開始研究海水的氣泡時,發現一篇1962年發表的論文中,有一段寫道:「泡沫的生成不僅僅是來自於破碎的浪花,還有許多是來自海底腐化的物質、魚類噯氣(打嗝出的氣體)以及甲烷。」打嗝?我忽然感覺到這篇文章的作者,似乎曾經坐在暗沉而舒適的皮椅上寫作,而且地點還是在倫敦某個接近港口、不起眼的俱樂部內。因此當我讀到這段時,不禁告訴別人這是一種誤解。
過了三年,當我在荷屬古拉索島進行水下研究時,忽然有一隻長約1.5公尺的大目海鰱從我肩膀上游過,並且從牠的鰓中打了一個嗝,我才知道那篇文章並非毫無依據。事實上,一般的硬骨魚類通常有一個貯存空氣的地方,稱為「魚鰾」(swim bladder),魚可以藉此控制自己的浮力;如果魚的整體密度和周圍的水相同,就可以在一個位置完全保持平衡。大目海鰱的魚鰾較為特殊,能夠與鰓直接配合呼吸、並且提取氧氣。雖然不得不承認真的有魚會打嗝,但是我仍然不認為這些魚類是造成海面泡沫的重要原因。

///

對一個慵懶的星期天而言,一間英式酒吧是午餐最好的去處。這些餐廳內部給人的印象,不是充滿設計感的裝潢,而是層層堆疊交錯的空間隱身在古老橡木梁柱之間。我常去的那間酒吧,其中一個角落有個黃銅的飼料盆,旁邊那張照片中是獲得喬治亞獎的豬,而某次我就坐在這些東西之間,點了一份標準的酒吧午餐。附餐會有薯片,以及隨之附上的一罐番茄醬,但是這種組合需要你付出一點體力為代價。數十年來,這些橡木的梁柱已經見證過無數次這樣的儀式:擠番茄醬。為了要讓番茄醬離開瓶子,人們大多必須與它暴力相向。
大部分的人每次剛開始倒番茄醬時,都很樂觀地直接讓瓶口朝下,嘗試讓番茄醬自然流出,但通常什麼事都不會發生。因為番茄醬是厚實黏稠的物體,重力不足以把它拉出瓶子。廠商之所以讓它具備這種狀態,第一個原因是黏稠的番茄醬可以避免放置了一段時間後,裡面的香料開始沉澱,使得你必須在使用前將它搖晃均勻;第二個原因是大家喜歡薯片上有厚厚一層番茄醬,如果它不夠黏稠,淋在食物上只會有薄薄的一層,其餘都會流到旁邊。不過說了這麼多,我的番茄醬依然在瓶子內,還是沒有淋到薯片上。
當大家將打開瓶口的番茄醬倒置在薯片上方幾秒鐘後,終於開始明白瓶子裡的番茄醬對於重力的拉扯是絲毫不為所動。那些亟欲享用薯片的人開始搖晃瓶子,而且越來越大力,甚至還會用另外一隻手拍擊瓶子的底部(這時的「底部」是指朝上的那側)。當餐廳裡的人都開始注意這個人與瓶子之間的戰鬥時,忽然,四分之一瓶的番茄醬就這樣倒在薯片上。
這就奇怪了,它可以一次流出這麼多,讓薯片蓋滿厚厚的番茄醬(也可能噴了一大堆到桌上),那為什麼剛才一滴也流不出來?這種抗拒到了某種程度之後,才會大量出現的流動,原因是什麼?
這一切都跟番茄醬有關,當你嘗試緩慢而柔和地推動它時,它就如同一個固體,但是一旦你快速搖晃它,它就像是液體,因而流動自如。當番茄醬在瓶子內或在薯片上時,只有重力會輕微地吸引它,就如同吸引一個固體一樣,維持在原來的位置;但是快速搖晃就會使得番茄醬的內部開始移動,此時就出現液體的行為。這一切都跟時間有關1,如果使用不同的速度移動同樣的東西,結果就會大不相同。
番茄醬最主要的成分就是番茄,以及增加風味的醋與香料,而番茄本身除了大量的水,其他成分似乎也沒有什麼特別。但是這瓶番茄醬的祕密就在於其中0.5%的添加物,它們是由醣分子組成的長鏈化合物,稱為「黃原膠」(xanthan gum)。這種化合物最早的用途是在於細菌的培養,如今則是一種常見的食品添加劑。當瓶子靜置在桌上時,這些被水包圍的長鏈分子彼此會輕微地交纏,因此可以固定番茄醬內的各種物質。但是隨著餐廳客人拿著瓶子搖晃,這些長鏈分子會暫時解開,不過很快又會恢復與其他的長鏈分子交纏。當瓶子搖晃得越來越劇烈時,就會有越多分子處於分開的狀態,直到它們交纏的速度比不上分開的速度,這時,番茄醬就不再像固體,而是變成了液體,從瓶子內流出來了。
所有英國人每天花在倒番茄醬的時間,一定相當可觀,但其實有一個方法可以解決這個問題,卻很少人去做。大家常將瓶子倒置,然後搖晃、拍打底部,其實是事倍功半的做法,因為變成液體的番茄醬都在底部,而朝下的瓶頸內的番茄醬,卻依然像固體。所以最好的方式不是拍打底部,而是讓番茄醬的瓶子傾斜對準薯片,然後拍打瓶子的前端,這時變成液體的番茄醬就在出口,所以很容易就自然地流出來,而且不需要大力搖晃,不會弄出打擾其他客人的聲響,也不用擔心整瓶番茄醬都變成液體,忽然噴得到處都是,更不會讓你的薯片埋在一大灘的番茄醬底下。

審定推薦

【審訂】

鄭永銘

畢業於台師大物理系、化學研究所,曾經擔任台北市教育輔導團資訊教育科輔導員,台北市教育局中小學創意競賽規劃委員,臺北市建國中學物理教師等職務,並經常出席全國中小學創意教學研習之講座,及海峽兩岸中小學資優研習營之講座。目前為公共電視節目的科學顧問。曾指導學生參加2008國際物理奧林匹亞競賽榮獲兩面金牌。


【國際推薦】

「這本書展現了物理學平易近人而有趣的一面,使我讀起來非常地快樂。透過作者的解說,讓我們發現原來單調的日常事物,竟然有著如此迷人的一面,甚至不亞於哈伯望遠鏡看到的天體,或是在大型強子對撞機中產生的物質。」
——《悖論》《解開生命之謎》作者、物理學家 吉姆.艾爾-卡利里(Jim Al-Khalili)

「這是一本迷人、平易近人而充滿熱情的書。海倫邀請你用她的視角來看這個世界,並了解物理學家的想法,藉此讓你發現隱藏在普通與日常生活背後的科學。」
——《數學的戀愛應用題》作者、數學家 漢娜‧弗萊(Hannah Fry)

「在每一個岩石下、每一個雨滴旁、每一顆沙子內,海倫‧齊爾斯基都能找到科學展現的奇蹟。」
——《數學教你不犯錯》作者、數學家 艾倫伯格(Jordan Ellenberg)

「如果你認為要理解事物運作的原理,是一件比登天還難的事情,那麼請你翻一下這本書,它會帶著你一步登天,並且讓你從高處看到美麗而壯闊的風景。這無疑是一本有趣、迷人而出色的好書。」
——英國喜劇演員與作家 馬庫斯‧布里斯托克(Marcus Brigstocke)

【好評推薦】(按姓氏筆畫排列)

李遠哲    中央研究院前院長
林秀豪    清華大學物理系特聘教授
孫維新    國立自然科學博物館館長/臺灣大學物理學與天文所教授
高涌泉    臺灣大學物理系兼科學教育發展中心主任
彭啟明    大氣科學博士/大愛電視台 氣象主播
黃貞祥    國立清華大學生命科學系助理教授/泛科學專欄作者
鄭國威    泛科學總編輯
賴以威    師大電機系助理教授 數感實驗室共同創辦人
螺螄拜恩 暢銷書人氣作家
簡麗賢    北一女中物理老師
羅焜哲    台南一中物理科教師

「作者用詩意的眼光與文筆,帶領你在日常周遭的小角落,看見物理!」
——清華大學特聘教授 林秀豪  


「英國大詩人濟慈以為牛頓的科學破壞了彩虹的美麗與詩意。其實,科學並非只有冷冰冰的公式和定理而已,還能發掘出大自然深刻而理性的美感,以及充滿探索未知而激發出更多無窮的想像力。《茶杯裡的風暴》就以身作則地帶領我們,在身旁習以為常的小事物裡遨遊物理的世界,讓平凡生活增添了許多奇妙的樂趣。」
——國立清華大學生命科學系助理教授/泛科學專欄作者 黃貞祥  


「身為文組生,個人數理成績永遠在低空徘徊,以至於我剛拿到本書時略感暈眩(扶額)。然而閱畢後,我非常希望它能提早二十年出現,以改變眾多數理白癡的人生。
本書以一則則生動有趣的日常小故事,將科學由少數專業人士範疇,推展至芸芸眾生的生活。閱讀之際,我不再產生『阿鬼,你還是講中文吧~』的想法,反而為了進入一個前所未見的美麗新世界而欣喜不已。」

——暢銷書人氣作家 螺螄拜恩


「談到「物理」,不少人可能反應:「好難喔!看不懂。」確實如此,在學習「物理」科目期間,不少學生認為難度很高,甚至覺得「高不可攀」。然而,不談深奧難懂物理關係式和專有名詞,物理其實很有趣,物理在生活中,生活中有物理。
如果不相信,不妨閱讀三采文化出版的《茶杯裡的風暴:丟掉公式,從一杯茶開始看見科學的巧妙與奧祕》。這本書以淺顯易懂的說法讓讀者能與生活經驗結合,再思考其中的科學概念,例如從水等液體討論表面張力和黏滯性;從一般物體的轉動談現代科技的人造衛星。從生活主題切入談物理概念,讀來讓我興趣盎然,獲得更多不同角度的說法,對活化物理教學裨益良多。」

——北一女中物理老師  簡麗賢

此功能目前限定會員使用,請先登入會員



  

茶杯裡的風暴:丟掉公式,從一杯茶開始看見科學的巧妙與奧祕

關閉視窗